Sentiment lexicon adaptation with context and semantics for the social web

نویسندگان

  • Hassan Saif
  • Miriam Fernández
  • Leon Kastler
  • Harith Alani
چکیده

Sentiment analysis over social streams offers governments and organisations a fast and effective way to monitor the publics’ feelings towards policies, brands, business, etc. General purpose sentiment lexicons have been used to compute sentiment from social streams, since they are simple and effective. They calculate the overall sentiment of texts by using a general collection of words, with predetermined sentiment orientation and strength. However, words’ sentiment often vary with the contexts in which they appear, and new words might be encountered that are not covered by the lexicon, particularly in social media environments where content emerges and changes rapidly and constantly. In this paper, we propose a lexicon adaptation approach that uses contextual as well as semantic information extracted from DBPedia to update the words’ weighted sentiment orientations and to add new words to the lexicon. We evaluate our approach on three different Twitter datasets, and show that enriching the lexicon with contextual and semantic information improves sentiment computation by 3.7% in average accuracy, and by 3% in average F1 measure.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Supervised Method for Constructing Sentiment Lexicon in Persian Language

Due to the increasing growth of digital content on the internet and social media, sentiment analysis problem is one of the emerging fields. This problem deals with information extraction and knowledge discovery from textual data using natural language processing has attracted the attention of many researchers. Construction of sentiment lexicon as a valuable language resource is a one of the imp...

متن کامل

Opinion Bias Detection with Social Preference Learning in Social Data

In this paper, the authors propose a novel bias detection method based on social preference learning for targets on competing topics such as “GalaxyTab vs. iPad” in Twitter. People tend to evaluate a topic by expressing their opinions towards the associated targets such as price and quality. To exploit characteristics of social data, targets are extracted by a modified HITS algorithm on a tripa...

متن کامل

Chinese Text Sentiment Analysis Utilizing Emotion Degree Lexicon and Fuzzy Semantic Model

Text on the web has become a valuable source for mining and analyzing user opinions on any topic. Non-native English speakers heavily support the growing use of Network media especially in Chinese. Many sentiment analysis studies have shown that a polarity lexicon can effectively improve the classification consequences. Social media, where users spontaneously generated content have become impor...

متن کامل

Automatic Product Aspect Identification for Opinion Mining

The growth of web 2.0 application, consumer feedback about product is analyzed to improve the quality of the product. The consumer feedback or reviews are extracted from the social media and then determine the polarity (positive, negative or objective) is called sentiment analysis. It is also known as opinion mining or appraisal extraction or review mining. The sentiment lexicon plays an import...

متن کامل

Adapting Sentiment Lexicons Using Contextual Semantics for Sentiment Analysis of Twitter

Sentiment lexicons for sentiment analysis offer a simple, yet effective way to obtain the prior sentiment information of opinionated words in texts. However, words’ sentiment orientations and strengths often change throughout various contexts in which the words appear. In this paper, we propose a lexicon adaptation approach that uses the contextual semantics of words to capture their contexts i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Semantic Web

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017